

The Past - Desert Storm

- 525,000 US troops deployed
- 7 month deployment period via ships and air

- 4.65 billion ton-miles (697.5 million for Berlin Airlift)
- 20,500 missions; 534,000 passengers; 542,000 tons
- Ground Forces Example VII Corps Support:
 - 150,000 troops, 50,000 combat vehicles
 - Estimated 800,000 gallons diesel/day consumption
 - Required 3,300,000 gallons diesel/day (11,500 tons)

The Present - Kosovo

• Quick reaction desired

- Mission / Force Option/ Estimates
 - 8,000 troops to secure border
 - 75,000 troops to liberate Kosovo
 - 200,000 troops to occupy and monitor
- Troop transport not the hard part
 - 240,000 troops to Desert Shield in 1 month
 - Vehicles & support not available for <u>many</u> weeks
- Full Deployment Options
 - Rapid Reaction
 - Tactical Insertion

Air Transport

C-130/C-17

- Urgency Rules Out Strategic Sea lift

Deployability & Transportability Challenges

C-130J Size Limitations

C-130J: 36,000-40,000 lb Payload Capacity

Design Drivers

- Weight
 - 40%-50% of manned combat vehicle weight is armor
 - 20% is weapons system
 - 20% is drive train

• Size

- Vehicle height is determined by human factors
 - > M1 A1 Abrams 3.25 ft. height for reclined driver
 - \rightarrow M3 Bradley \geq 4 ft. for seated troops
- Width
 - > Maximums are transportability related
 - Minimums are subsystem spacing or human factors related

- Volume (MBT)
 - > Approximately 30% of volume is attributed to crew

What Are We Trying to Fix?

What Limits Past Solutions?

Bore Pore

Lethality

Survivability

Former
Solutions
Lead to
Bigger,
Heavier
Systems

<u>Mobility</u>

Transportability

Current Need for Reduced Manpower and Costs

Plus

Lack of Forward Basing Invalidates Former Solutions

Input

Weight & Volume

Current Design Approaches

Multi-Mission Combat Systems TTO - A New Approach

Common Solutions

- Reduced Size
- Reduce/Eliminate

<u>Technologies</u>

Robotics

Electric Propulsion

Adv Lethality

Active Protection

DARPA/Army Study Goals

- Identify potential solutions and new approaches
- Provide convincing data supporting high payoff
- Explore and demonstrate high risk solutions and/or novel approaches to ground combat

Total Systems Approach Is Needed Tall Television

New Design Philosophy

Mobility/ **Transportibility**

- Common Prime Power
- All-Wheel Drive
- Advanced Lightweight Materials

Multiplication Virtual Prototypino

Ageorgia gimulation Virtual Prototypino

Minimation Virtual Prototypino Naragement-Robotics

Lethality

- Energy Sources
- Launchers
- Missiles
- Smart Munitions

Systems

Information Dominance

- Intelligence Preparation of the Battlefield (IPB)
- Situational **Awareness**

Survivability

- Active Defense
- Passive Defense
- Threat Avoidance
- Minimally Manned **Systems**

Supportability

- Reduced Fuel Dependence
- Reduced Maintenance
- Reduced Life Cycle Costs

Multi-mission Systems

Security

Direct Fire Support

Indirect Fire Support

Unique Theatre Combat Vehicle

Troop Transport

Reconnaissance & Scout

Targeting

Anti-Infantry

Mine Clearing

Logistic Support

Technologies & Concepts From Existing Programs

SUO

TMR

UCAV

DEMO II / III

Joint Robotics

MALD

AFSS

DARPA

Multi-Mission Combat Systems DoD & Other EM

Gun

ETC Gun

MAV

CHPS

AAV

RST-V

CKEM

Active Defense Systems

- Use total systems approach for Multi-Mission Combat Systems:
 - Multi-functional/multi-mission capabilities
 - Re-configurable systems
 - Enhanced survivability through manned/ unmanned teaming, active defense, etc.
 - Enhanced lethality/mission effectiveness
 - Enhanced situational awareness
 - Energy and power management with multifunction components

Study Azimuths

DARPA Role

DARPA Initiative

Provides the

"Activation

Energy"

Transition
To The
Services

Future Shortfall

GOAL

Current Design Evolution
(Limited Resource Approach)

Time

Study Program Plan

- Identify high risk/high payoff concepts
- Identify issues with manned/unmanned teaming, advanced weapons systems
- Assess systems capabilities against appropriate missions
- Identify existing program crossovers
- Identify enabling technologies

Multi-Mission Combat Systems